Dasar-Dasar Kimia Analitik

Posted By: ipink - 1/01/2014 01:13:00 am
KATA PENGANTAR

Segala puji bagi Allah SWT yang telah melimpahkan taufik dan hidayah-NYA, shalawat dan salam kepaada Nabi Besar Muhammad SAW yang telah membawa umat manusia dari alam kegelapan, kebodohan, kepada alam kemuliaan dan alam teknologi yang penuh hikmah dan ilmu pengetahuan.
Selanjutnya, penulis menyampaikan ucapan terima kasih khusus kepada dosen pengampu yakni Ibu Intan Lestari, M.Si yang telah memberi kesempatan kepada penulis untuk mempresentasikan makalah berjudul “ARGENTOMETRI”. Semoga Allah SWT memberikan pahala kepadanya yang berlipat ganda, amiin.
Akhirnya penulis menyadari sebagai manusia biasa bahwa dalam penulisan makalah ini masih banyak kekurangannya, untuk itu kepada seluruh rekan-rekan mahasiswa mohon koreksi dan kontribusi untuk kesempurnaan makalah ini dan penulis mengucapkan terima kasih.

DAFTAR ISI

KATA PENGANTAR
DAFTAR ISI

BAB I. PENDAHULUAN
1.1 Latar Belakang
1.2 Rumusan Masalah
1.3 Tujuan
1.4 Manfaat
1.5 Batasan Masalah

BAB II. PEMBAHASAN

II. 1 Pengertian Argentometri
II. 2 Titrasi Pengendapan
II.3 Faktor yg mempengaruhi kelarutan
II. 4 Macam-macam Metode
II. 5 Pembentukan Endapan Berwarna
II. 6 Contoh Perhitungan
BAB III. KESIMPULAN DAN SARAN

DAFTAR PUSTAKA

BAB II
PEMBAHASAN
II. 1 Pengertian Argentometri
Argentometri merupakan titrasi pengendapan sample yang dianalisis dengan menggunakan ion perak. Biasanya, ion-ion yang ditentukan dalam titrasi ini adalah ion halida (Cl-, Br-, I-). (Khopkar,1990)
Hasil kali konsentrasi ion-ion yang terkandung suatu larutan jenuh dari garam yang sukar larut pada suhu tertentu adalah konstan. Misalnya suatu garam yang sukar larut AmBn dalam larutan akan terdisosiasi menjadi m kation dan n anion.
AmBn → mA++ nB-
Hasil kali kelarutan = (CA+)M × (CB-)Ntitrasi argentometri adalah titrasi dengan menggunakan perak nitrat sebagai titran dimana akan terbentuk garam perak yang sukar larut. Jika larutan perak nitrat ditambahkan pada larutan kalium sianida maka mula-mula akan terbentuk endapan putih yang pada pengadukan akan larut membentuk larutan kompleks yang stabil .
AgNO3 + 2 KCN → K(Ag(CN)2) +KNO3
Ag+ + 2 nn- → Ag(CN)2
Jika reaksi telah sempurna maka reaksi akan berlangsung lebih lanjut membentuk senyawa kompleks yang tak larut .
Ag+ (Ag(CN)2)- → Ag(Ag(CN)2)
Titik akhir ditandai dengan terbentuknya endapan putih yang permanent. salah satu kesulitan dalam menentukan titik akhir ini terletak pada fakta dimana perak sianida yang diendapkan oleh adanya kelebihan ion perak yang agak lebih awal dari titik ekuivalen, sangat lambat larut kembali dan titrasi ini makan waktu yang lama.
II. 2 Titrasi Pengendapan
• Jumlah metode tidak sebanyak titrasi asam-basa ataupun titrasi reduksi-oksidasi (redoks)
• Kesulitan mencari indikator yang sesuai
• Komposisi endapan seringkali tidak diketahui pasti terutama jika ada efek kopresipitasi
Kelarutan = konsentrasi larutan jenuh zat padat (kristal) di dalam suatu pelarut pada suhu tertentu.(dalam keadaan setimbang).
Larutan jenuh dapat dicapai dengan penambahan zat ke dalam pelarut secara terus menerus hingga zat tidak melarut lagi dengan cara menaikkan lagi konsentrasi ion-ion tertentu hingga terbentuk endapan.
II.3 Faktor yg mempengaruhi kelarutan
1 Suhu
2. Sifat pelarut
3. Ion sejenis
4. Aktivasi ion
5. pH
6. Hidrolisis
7. Hidroksida logam
8. Pembentukan senyawa kompleks
Pada kebanyakan garam anorganik, kelarutan meningkat jika suhu naik. Sebaiknya proses pengendapan, penyaringan dan pencucian endapan dilakukan dalam keadaan larutan panas kecuali untuk endapan yang dalam larutan panas memiliki kelarutan kecil (mis. Hg2Cl2, MgNH4PO4) cukup disaring setelah terlebih dahulu didinginkan di lemari es. Kebanyakan garam anorganik larut dalam air dan tidak arut dalam pelarut organik. Air memiliki momen dipol yang besar dan tertarik oleh kation dan anion membentuk ion hidrat. Sebagaimana ion hidrogen yang membentuk H3O+, energi yang dibebaskan pada saat interaksi ion dengan pelarut akan membantu meningkatkan gaya tarik ion terhadap kerangka padat endapan. Ion-ion dalam kristal tidak memiliki gaya tarik terhadap pelarut organik, sehingga kelarutannya lebih kecil daripada kelarutan dalam air. Pada analisis kimia, perbedaan kelarutan menjadi dasar untuk pemisahan senyawa. Contoh : campuran kering Ca(NO3)2 + Sr(NO3)2 dipisahkan dalam campuran alkohol + eter, hasilnya Ca(NO3)2 larut, sedangkan Sr(NO3)2 tidak larut. Endapan lebih mudah larut dalam air daripada dalam larutan yang mengandung ion sejenis. Mis. pada AgCl, [Ag+][Cl-] tidak lebih besar dari tetapan (Ksp AgCl = 1x10-10)di dalam air murni di mana [Ag+] = [Cl-] = 1x10-5 M; jika ditambahkan AgNO3 hingga [Ag+] = 1x10-4 M, maka [Cl-] turun menjadi 1x10-6 M, kanan sesuai arah : Ag+ + Cl- AgCl Ke dalam endapan terjadi penambahan garam, sedangkan jumlah Cl- dalam larutan menurun.
Teknik penambahan ion sejenis dilakukan oleh analis untuk tujuan :
1) menyempurnakan pengendapan
2) pencucian endapan dengan larutan yang mengandung ion sejenis dengan endapan
Untuk larutan yang mengandung Ag, jika ditambahkan NaCI maka mula-mula terbentuk suspensi yang kemudian terkoagulasi (membeku). Laju terjadinya koagulasi menyatakan mendekamya titik ekivalen. Penambahan NaCI ditersukan sampai titik akhir tercapai. Perubahan ini dilihat dengan tidak terbentuknya endapan AgCI pada cairan supernatan. Akan tetapi sedikit NaCI harus ditambahkan untuk menyempurnakan titik akhir. Penentuan Ag sebagai AgCI dapat dilakukan dengan pengukuran turbidimetri yaitu dengan pembauran sinar (Underwood, 1986).
Jika AgNO3 ditambahkan ke NaCI yang mengandung zat berpendar fluor, titik akhir ditentukan dengan berubahnya warna dari kuning menjadi merah jingga. Jika didiamkan, tampak endapan berwarna, sedangkan larutan tidak berwarna disebabkan adanya adsorpsi indikator pada endapan AgCI. Warna zat yang terbentuk dapat berubah akibat adsorpsi pada penukaan (Khopkar, 1990).
Semua indikator adsorpsi bersifat ionik. Selain indikator adsorpsi tersebut terdapat pula indikator-indikator adsorpsi yang digunakan dalam titrasi pengendapan, yaitu turunan krisodin. Indikator tersebut merupakan indikator asam basa dan indikator reduksi oksidasi dan memberikan perubahan warna yang reversibel dengan brom. Indikator ini berwarna merah pada suasana asam clan kuning pada suasana basa. Indikator ini juga digunakan untuk titrasi ion I- dengan ion Ag+. Kongo merah adalah indikator asam basa lainnya (Khopkar, 1990).
Selain kelemahan, indikator adsorpsi mempunyai beberapa keunggulan. Indikator ini memberikan kesalahan yang kecil pada penentuan titik akhir titrasi. Perubahan warna yang disebabkan adsorpsi indikator biasanya tajam. Adsorpsi pada permukaan berjalan baik jika endapan mempunyai luas permukaan yang besar. Warna adsorpsi tidak begitu jelas jika endapan terkoagulasi. Kita tidak dapat menggunakan indikator tersebut karena koagulasi. Koloid pelindung dapat mengurangi masalah tersebut. Indikator-indikator tersebut bekerja pada batasan daerah-daerah pH tertentu juga pada konsentrasi tertentu saja, yaitu pada keadaan yang sesuai dengan peristiwa adsorpsi dan desorpsi saja (Vogel, 1990).
Faktor-Faktor Yang Mempengaruhi Kelarutan
Pengendapan merupakan metode yang paling baik pada anlisis gravimetri. Kita akan memperhatikan faktor-faktor yang mempengaruhi kelarutan. Parameter-parameter yang penting adalah temperatur, sifat pelarut, adanya ion-ion pengotor, pH, hidrolisis, pengaruh kompleks, dan lain-lain (Khopkar, 1990).
Kelarutan bertambah dengan naiknya temperatur. Kadangkala endapan yang baik terbentuk pada larutan panas, tetapi jangan dilakukan penyaringan terhadap larutan panas karena pengendapan dipengaruhi oleh faktor temperatur. Garam-garam anorganik lebih larut dalam air. Berkurangnya kelarutan di dalam pelarut organik dapat digunakan sebagai dasar pemisahan dua zat. Kelarutan endapan dalam air berkurang jika lanitan tersebut mengandung satu dari ion-ion penyusun endapan, sebab pembatasan Ks.p (konstanta hasil kali kelarutan). Baik kation atau anion yang ditambahkan, mengurangi konsentrasi ion penyusun endapan sehingga endapan garam bertambah. Pada analisis kuantitatif, ion sejenis ini digunakan untuk mencuci larutan selama penyaringan (Vogel, 1990).
Beberapa endapan bertambah kelarutannya bila dalam lanitan terdapat garam-garam yang berbeda dengan endapan. Hal ini disebut sebagai efek garam netral atau efek aktivitas. Semakin kecil koefesien aktivitas dari dua buah ion, semakin besar hasil kali konsentrasi molar ion-ion yang dihasilkan. Kelarutan garam dari asam lemah tergantung pada pH larutan. Jika garam dari asam lemah dilarutkan dalam air, akan menghasilkan perubahan (H). Kation dari spesies garam mengalami hidrolisis sehingga menambah kelarutannya (Vogel, 1990).
Kelarutan garam yang sedikit larut merupakan fungsi konsentrasi zat lain yang membentuk kompleks dengan kation garam tersebut. Beberapa endapan membentuk kompleks yang larut dengan ion pengendap itu sendiri. Mula-mula kelarutan berkurang (disebabkan ion sejenis) sampai melalui minuman. Kemudian bertambah akibat adanya reaksi kompleksasi (Vogel, 1990). Reaksi yang menghasilkan endapan dapat dimanfaatkan untuk analisis secara titrasi jika reaksinya berlangsung cepat, dan kuantitatif serta titik akhir dapat dideteksi. Beberapa reaksi pengendapan berlangsung lambat dan mengalami keadaan lewat jenuh. Tidak seperti gravimetri, titrasi pengendapan tidak dapat menunggu sampai pengendapan berlangsung sempurna. Hal yang penting juga adalah hasil kali kelarutan (KSP) harus cukup kecil sehingga pengendapan bersifat kuantitatif dalam batas kesalahan eksperimen. Reaksi samping tidak boleh terjadi, demikian juga kopresipitasi. Keterbatasan utama pemakaian cara ini disebabkan sedikit sekali indikator yang sesuai. Semua jenis reaksi diklasifikasi berdasarkan tipe indikator yang digunakan untuk melihat titik akhir (Khopkar, 1990).
II. 4 Macam-macam Metode
Ada beberapa metode dalam titrasi argentometri yang dibedakan berdasarkan indikator yang digunakan pada penentuan titik akhir titrasi, antara lain:
a. Metode Mohr
Metode Mohr biasanya digunakan untuk menitrasi ion halida seperti NaCl, dengan AgNO3 sebagai titran dan K2CrO4¬ sebagai indikator. Titik akhir titrasi ditandai dengan adanya perubahan warna suspensi dari kuning menjadi kuning coklat. Perubahan warna tersebut terjadi karena timbulnya Ag2CrO4, saat hamper mencapai titik ekivalen, semua ion Cl- hamper berikatan menjadi AgCl. Larutan standar yang digunakan dalam metode ini, yaitu AgNO3, memiliki normalitas 0,1 N atau 0,05 N. (Alexeyev,V,1969)
Indikator menyebabkan terjadinya reaksi pada titik akhir dengan titran, sehingga terbentuk endapan yang berwarna merah-bata, yang menunjukkan titik akhir karena warnanya berbeda dari warna endapan analat dengan Ag+.
Pada analisa Cl- mula-mula terjadi reaksi:
Ag+(aq) + Cl-(aq) ↔ AgCl(s)↓
Sedang pada titik akhir, titran juga bereaksi menurut reaksi:
2Ag+(aq) + CrO4(aq) ↔ Ag2CrO4(s)↓
Pengaturan pH sangat perlu, agar tidak terlalu rendah ataupun tinggi. Bila terlalu tinggi, dapat terbentuk endapan AgOH yang selanjutnya terurai menjadi Ag2O sehingga titran terlalu banyak terpakai.
2Ag+(aq) + 2OH-(aq) ↔ 2AgOH(s)↓ ↔ Ag2O(s)↓ + H2O(l)
Bila pH terlalu rendah, ion CrO4- sebagian akan berubah menjadi Cr2O72- karena reaksi
2H+(aq) + 2CrO42-(aq) ↔ Cr2O72- +H2O(l)
Yang mengurangi konsentrasi indikator dan menyebabkan tidak timbul endapannya atau sangat terlambat. Selama titrasi Mohr, larutan harus diaduk dengan baik. Bila tidak, maka secara lokal akan terjadi kelebihan titrant yang menyebabkan indikator mengendap sebelum titik ekivalen tercapai, dan dioklusi oleh endapan AgCl yang terbentuk kemudian; akibatnya ialah, bahwa titik akhir menjadi tidak tajam.
b. Metode Volhard
Metode Volhard menggunakan NH4SCN atau KSCN sebagai titrant, dan larutan Fe3+ sebagai indikator. Sampai dengan titik ekivalen harus terjadi reaksi antara titrant dan Ag, membentuk endapan putih.
Ag+(aq) + SCN-(aq) ↔ AgSCN(s)↓ (putih)
Sedikit kelebihan titrant kemudian bereaksi dengan indikator, membentuk ion kompleks yang sangat kuat warnanya (merah)
SCN-(aq) + Fe3+(aq) ↔ FeSCN2+(aq)
Yang larut dan mewarnai larutan yang semula tidak berwarna.
Karena titrantnya SCN- dan reaksinya berlangsung dengan Ag+, maka dengan cara Volhard, titrasi langsung hanya dapat digunakan untuk penentuan Ag+ dan SCN- sedang untuk anion-anion lain harus ditempuh cara titrasi kembali: pada larutan X- ditambahkan Ag+ berlebih yang diketahui pasti jumlah seluruhnya, lalu dititrasi untuk menentukan kelebihan Ag+. Maka titrant selain bereaksi dengan Ag+ tersebut, mungkin bereaksi pula dengan endapan AgX:
Ag+(aq) (berlebih) + X- (aq) ↔ AgX(s) ↓
Ag+(aq) (kelebihan) + SCN- (aq) (titrant) ↔ AgSCN(s) ↓
SCN-(aq) + AgX (s) ↔ X-(aq) + AgSCN(aq) ↓
Bila hal ini terjadi, tentu saja terdapat kelebihan titrant yang bereaksi dan juga titik akhirnya melemah (warna berkurang).
Konsentrasi indikator dalam titrasi Volhard juga tidak boleh sembarang, karena titrant bereaksi dengan titrat maupun dengan indikator, sehingga kedua reaksi itu saling mempengaruhi.
Penerapan terpenting cara Volhard ialah untuk penentuan secara tidak langsung ion-ion halogenida: perak nitrat standar berlebih yang diketahui jumlahnya ditambahkan sebagai contoh, dan kelebihannya ditentukan dengan titrasi kembali dengan tiosianat baku. Keadaan larutan yang harus asam sebagai syarat titrasi Volhard merupakan keuntungan dibandingkan dengan cara-cara lain penentuan ion halogenida karena ion-ion karbonat, oksalat, dan arsenat tidak mengganggu sebab garamnya larut dalam keadaan asam.
c. Metode Fajans
Dalam titrasi Fajans digunakan indikator adsorpsi. Indikator adsorpsi ialah zat yang dapat diserap pada permukaan endapan (diadsorpsi) dan menyebabkan timbulnya warna. Penyerapan ini dapat diatur agar terjadi pada titik ekivalen, antara lain dengan memilih macam indikator yang dipakai dan pH.
Cara kerja indikator adsorpsi ialah sebagai berikut: indikator ini ialah asam lemah atau basa lemah organik yang dapat membentuk endapan dengan ion perak. Misalnya fluoresein yang digunakan dalam titrasi ion klorida. Dalam larutan, fluoresein akan mengion (untuk mudahnya ditulis HFl saja).
HFl(aq) ↔ H+(aq) +Fl-(aq)
Ion Fl- inilah yang diserap oleh endapan AgX dan menyebabkan endapan berwarna merah muda. Karena penyerapan terjadi pada permukaan, dalam titrasi ini diusahakan agar permukaan endapan itu seluas mungkin supaya perubahan warna yang tampak sejelas mungkin, maka endapan harus berukuran koloid. Penyerapan terjadi apabila endapan yang koloid itu bermuatan positif, dengan perkataan lain setelah sedikit kelebihan titrant (ion Ag+).
Pada tahap-tahap pertama dalam titrasi, endapan terdapat dalam lingkungan dimana masih ada kelebihan ion X- dibanding dengan Ag+; maka endapan menyerap ion-ion X- sehingga butiran-butiran koloid menjadi bermuatan negatif. Karena muatan Fl- juga negatif, maka Fl- tidak dapat ditarik atau diserap oleh butiran-butiran koloid tersebut. Makin lanjut titrasi dilakukan, makin kurang kelebihan ion X-; menjelang titik ekivalen, ion X- yang terserap endapan akan lepas kembali karena bereaksi dengan titrant yang ditambah saat itu, sehingga muatan koloid makin berkurang negatif. Pada titik ekivalen tidak ada kelebihan X- maupun Ag+; jadi koloid menjadi netral. Setetes titrant kemudian menyebabkan kelebihan Ag+. Ion-ion Ag+ ini diserap oleh koloid yang menjadi positif dan selanjutnya dapat menarik ion Fl- dan menyebabkan warna endapan berubah mendadak menjadi merah muda. Pada waktu bersamaan sering juga terjadi penggumpalan koloid, maka larutan yang tadinya berwarna keruh juga menjadi jernih atau lebih jernih. Fluoresein sendiri dalam larutan berwarna hijau kuning, sehingga titik akhir dalam titrasi ini diketahui berdasar ketiga macam perubahan diatas, yakni
(i) Endapan yang semula putih menjadi merah muda dan endapan kelihatan menggumpal
(ii) Larutan yang semula keruh menjadi lebih jernih
(iii) Larutan yang semula kuning hijau hampir-hampir tidak berwarna lagi.
Suatu kesulitan dalam menggunakan indikator adsorpsi ialah, bahwa banyak diantara zat warna tersebut membuat endapan perak menjadi peka terhadap cahaya (fotosensifitasi) dan menyebabkan endapan terurai.
Titrasi menggunakan indikator adsorpsi biasanya cepat, akurat dan terpercaya. Sebaliknya penerapannya agak terbatas karena memerlukan endapan berbentuk koloid yang juga harus dengan cepat. (Harjadi,W,1990)
II. 5 Pembentukan Endapan Berwarna
Seperti sistem asam, basa dapat digunakan sebagai suatu indicator untuk titrasi asam-basa. Pembentukan suatu endapan lain dapat digunakan untuk menyatakan lengkapnya suatu titrasi pengendapan. Dalam hal ini terjadi pula pada titrasi Mohr, dari klorida dengan ion perak dalam mana digunakan ion kromat sebagai indikator. Pemunculan yang permanen dan dini dari endapan perak kromat yang kemerahan itu diambil sebagai titik akhir (TE).
Titrasi Mohr terbatas untuk larutan dengan perak dengan pH antara 6,0 – 10,0. Dalam larutan asam konsentrasi ion kromat akan sangat dikurangi karena HCrO4- hanya terionisasi sedikit sekali. Lagi pula dengan hidrogen kromat berada dalam kesetimbangan dengan dikromat terjadi reaksi :
2H+ + 2CrO4- ↔ 2HCrO4 ↔ Cr2O72- + 2H2O
Mengecilnya konsentrasi ion kromat akan menyebabkan perlunya menambah ion perak dengan sangat berlebih untuk mengendapkan ion kromat dan karenanya menimbulkan galat yang besar. Pada umumnya garam dikromat cukup dapat larut. Proses argentometri termasuk dalam titrasi yang menghasilkan endapan dan pembentukan ion kompleks. Proses argentometri menggunakan AgNO3 sebagai larutan standar. Proses ini biasanya digunakan untuk menentukan garam-garam dari halogen dan sianida. Karena kedua jenis garam ini dapat membentuk endapan atau senyawa kompleks dengan ion Ag+ sesuai dengan persamaan reaksi sebagai berikut :
NaCL + Ag+ → AgCl ↓ + Na+
KCN + Ag+ → AgCl ↓ + K+
KCN + AgCN ↓ → K [Ag(CN)2 ]
Karena AgNO3 mempunyai kemurnian yang tinggi maka garam tersebut dapat digunakan sebagai larutan standar primer. Dalam titrasi argentometri terhadap ion CN- tercapai untuk garam kompleks K [Ag(CN)2 ] karena propes tersebut dikemukakan pertama kali oleh Lieberg, cara ini tidak dapat dilakukan dalam suasana amoniatial karena garam kompleks dalam larutan akan larut menjadi ion komplek diamilum. (Harizul, Rivai. 1995)
II. 6 Contoh perhitungan

a. Standarisasi AgNO3 dengan NaCL (indikator K2CrO4)

V ̅ AgNO3 = (27,9 + 27,5 + 27,5)/3 = 27,67 ml

N AgNO3 . V ̅ AgNO3 = N NaCl . V ̅ NaCl

N AgNO3 = (N NaCl. V NaCl)/(V ̅ AgNO3 ) = (0,1. 25)/(27,67) = 0,09 N

b. Standarisasi AgNO3 dengan NaCl indikator adsorbsi

V ̅ AgNO3 = (26,7 + 26,3 + 26,2)/3 = 26,4 ml

N AgNO3 . V ̅ AgNO3 = N NaCl . V ̅ NaCl

N AgNO3 = (N NaCl. V NaCl)/(V ̅ AgNO3 ) = (0,1. 25)/26,4 = 0,095 N

c. Standarisasi NH4CNS dengan AgNO3 0,1 N

V ̅ NH4CNS = (25,2 + 24,8+ 24,8)/3 = 24,93 ml

N NH4CNS . V ̅ NH4CNS = N NaCl . V ̅ NaCl

N NH4CNS = (N NaCl. V NaCl)/(V ̅ NH_4 CNS) = (25. 0,095)/24,93 = 0,095 N

d. Penentuan Klorida dalam Garam Dapur Kasar

V ̅ AgNO3 = (7,1+ 6,9 + 7,0)/3 = 7,0 ml

V NaCL = 10 ml

N AgNO3 = 0,095 N

Berat NaCl = NAgNO3 x Mr NaCl x 3 V ̅ AgNO3
= 0,095 . 58,5 . 7,0
= 38,902 mgram

Kadar NaCL = (38,902 mgram)/(450 mgram) x 100% = 8,64%

e. Penentuan Bromida dengan cara volhard

N AgNO3 = 0,01N
V AgNO3 (V1) = 10 ml
N NH4CNS = 0,095 N
Berat NaCl = N AgNO3 x Mr NaCl x 3 V ̅ AgNO3

Kadar NaCL = (38,902 mgram)/(450 mgram) x 100% = 8,64%

V ̅ NH4CNS = (4,2 + 3,8 + 4,0)/3 = 4,0 ml (V2)

Banyak KBr hasil Standarisasi :
= ((V1 x N AgNO3) – (V2 x N NH4CNS)) x Mr KBr
= ((10 x 0,095) – (4 x 0,0095)) x 199
= 67,83 mgram

BAB III
KESIMPULAN
Titrasi AgNO3 dan NaCl merupakan titrasi dengan Metode Mohr dan Titrasi sampel termasuk dalam Metode Fajans karena sampel mengandung ion I-.
Argentometri adalah titrasi pengendapan dengan larutan standar AgNO3.
Ada 4 metode argentometri yaitu metode Mohr, Volhard, Vajans, Duckel.
Pada titrasi argentometri, zat pemeriksaan yang telah dibubuhi indikator dicampur dengan larutan standar garam perak nitrat (AgNO3).
Dengan mengukur volume larutan standar yang digunakan sehingga seluruh ion Ag+ dapat tepat diendapkan, kadar garam dalam larutan pemeriksaan dapat ditentukan. (Al.Underwood,1992).
Titik akhir potensiometri didasarkan pada potensial elektrode perak yang dicelupkan kedalam larutan analit.
Titik akhir amperometri melibatkan penentuan arus yang diteruskan antara sepasang mikroelektrode perak dalam larutan analit. Sedangkan titik akhir yang dihasilkan indikator kimia, biasanya terdiri dari perubahan warna/muncul tidaknya kekeruhan dalam larutan yang dititrasi.

DAFTAR PUSTAKA

Alexeyev, V. 1969. Quantitative Analysis. Moscow: MIR Publishers
A. L. Underwood. 1989. Analisa Kuantitatif Edisi Keempat. Jakarta : Erlangga
Day RA. Jr dan Al Underwood.1992. Analisis Kimia Kuantitatif: Edisi Kelima. Jakarta : Erlangga
Harizul, Rivai. 1995. Asas Pemeriksaan Kimia. Jakarta : UI Press
Harjadi W. 1993. Ilmu Kimia Analitik Dasar. Jakarta : PT Gramedia
Hastuti, Sri, M.Si, dkk. 2007. Buku Petunjuk Praktikum Kimia Analitik Dasar I. Surakarta : Laboratorium Kimia Dasar FMIPA UNS
Khopkar, S.M. 1990. Konsep Dasar Ilmu Kimia Analitik. Jakarta: Universitas Indonesia
Skogg. 1965. Analytical Chemistry. Edisi keenam. Florida : Sounders College

About ipink

Organic Theme is officially developed by Templatezy Team. We published High quality Blogger Templates with Awesome Design for blogspot lovers.The very first Blogger Templates Company where you will find Responsive Design Templates.

0 komentar:

Post a Comment

Copyright © Kreasi Anak Reggae

Designed by